
Global-Scale Anycast Network Management
with Verfploeter

Wouter B. de Vries
University of Twente

Enschede, The Netherlands
w.b.devries@utwente.nl

Salmān Aljammāz
Cloudflare

London, United Kingdom
s@cloudflare.com

Roland van Rijswijk-Deij
University of Twente

Enschede, The Netherlands
r.m.vanrijswijk@utwente.nl

Abstract—Anycast has become a valuable tool for network
operators. It plays a vital role in making the DNS root system
globally highly available and resilient to stresses from e.g. DDoS
attacks. Content delivery networks use it to direct clients to local
caches, and to absorb attack traffic. Yet managing an anycast
network is far from simple. Earlier work studying a DDoS attack
on the DNS root system, for example, shows that even highly
distributed anycast networks can be overwhelmed.

To manage an anycast service, it is vital to know the catchment
of points of presence (PoPs) of the service. In earlier work, we
introduced “Verfploeter” a novel active measurement method
to determine anycast catchments using ICMP messages. Unlike
previously existing approaches, Verfploeter is unbiased, accurate
and can be executed directly by the anycast operator without the
need for external vantage points. We demonstrated the efficacy
of Verfploeter on a testbed and small anycast service.

In this paper, we take the next step and deploy Verfploeter on
one of the world’s largest anycast networks, the Cloudflare CDN
with 192 PoPs worldwide. We perform real-world case studies on
network planning (what happens when PoPs are switched on or
off), troubleshooting (reachability issues of an anycasted prefix)
and security (detecting spoofed attack traffic). These case studies
show that Verfploeter is highly suitable for such a large-scale
operation and gives operators vital insights that allow them to
improve network management practices of their anycast service.

Index Terms—Anycast, Routing, Measurements, Active, Mon-
itoring, BGP, Security, Troubleshooting, Network Planning

I. INTRODUCTION

Anycast is a technique, enabled by BGP, that allows
physically and geographically distinct systems to be addressed
with a single IP-address/IP-prefix. This allows services to be
scaled horizontally at different locations. Service providers use
IP anycast to provide increased resilience, lower latency, and
increased throughput for their services.

Examples of services that use anycast are the DNS root
servers and, e.g., Top Level Domain (TLD) DNS servers (e.g.
.com). Historically it was assumed that anycast is only suitable
for connectionless protocols, since each packet can potentially
reach a different anycast instance. DNS, largely dependent
on UDP, is therefore a suitable candidate for anycasting. It
has since been shown that Internet routing is stable enough to
allow anycast to work for both connection-less and connection-
oriented protocols, such as TCP [1], [2]. Nowadays, many large

Content Delivery Networks (CDNs) also utilize anycast, such
as Microsoft/Bing, Verizon/Edgecast, Akamai, and Cloudflare.

In earlier work [3] we introduced a novel methodology
to measure the catchments (i.e. which client will be served
by which site) of anycast services, called “Verfploeter”. Key
advantage of Verfploeter is that it does not require external
Vantage Points (VPs) such as RIPE Atlas probes, but instead
relies on ICMP-responsive Internet hosts. By sending ICMP
Echo Requests to many hosts on the Internet, and collecting
the responses, we can accurately establish the catchment of a
service for the full IPv4 Internet, or a part thereof. Unlike an
approach based on external vantage points, Verfploeter does
not suffer from bias due to the distribution of these points.

To date, we showed how Verfploeter performs on a testbed,
and, on a limited scale, the B root DNS server (which has just
three anycast sites). In contrast, in this paper we describe a
global-scale deployment in one of the world’s largest anycast
CDNs. We discuss the challenges of deploying Verfploeter in
an anycast network of this scale (with 192 global points-of-
presence). Then, we show how Verfploeter can help large-scale
anycast operators manage their network through three use cases:

Firstly, we show how Verfploeter’s detailed catchment
information helps manage changes in the configuration of
the active sites of an anycast service. For example, what would
happen if large site A is taken down, in terms of the shift in
clients to other sites. We argue that this is important since
depending on the shift of traffic, one or more of the other sites
might attract traffic exceeding its maximum capacity. This is
also particularly useful for planned maintenance.

Secondly, we show how Verfploeter can be used to regain
traditional ICMP-based troubleshooting capabilities. For exam-
ple, traditionally connectivity issues are confirmed using ping,
i.e. by sending an ICMP Echo Request packet. However, in
the case of anycast, the response to this packet will likely end
up in a different location. From the viewpoint of the sender
of the request packet this would appear as a timeout. Using
Verfploeter these packets are matched regardless of the location
where it is received, in essence allowing an asymmetric ping.

Lastly, we show how Verfploeter can be used to detect
spoofed traffic, by matching the known ingress location of
traffic from a specific client using high resolution catchment
data. Essentially we use Verfploeter to establish ground truth
on client-to-anycast mappings, and mark traffic (supposedly)978-1-7281-4973-8/20/$31.00 © 2020 IEEE

This is an author pre-print downloaded from https://rijswijk.github.io/

AS1

AS3

AS2

AS5

AS5

Client
AS4

1.1.1.0/24

1.1.1.0/24

Anycasted service

Amsterdam

Paris

Fig. 1: Client connecting to 1.1.1.1, an anycasted service

from that client that ends up in a different anycast site as
potentially suspicious.

The rest of this paper is organized as follows. First, we
provide the background in Section II. Then, in Section III
we describe the operational implementation. In Section IV we
discuss and analyse the three use cases. Then, in Section V, we
describe related work and finally, in Section VI we conclude.

II. BACKGROUND

A. Anycast

IP anycast is an addressing and routing strategy in which
multiple physical servers in the Internet are configured with
the same logical IP address. This strategy is widely used to
achieve high availability and redundancy of services over the
Internet, such as DNS and CDNs.

IP anycast takes advantage of the robustness of BGP that
defines the catchment of each anycast instance by mapping
users to the nearest instance, based on metrics that BGP takes
into consideration. These metrics include, among others, the
path length in terms of number of autonomous systems (ASes)
that are crossed, and local preferences. Anycast catchments
can be hard to predict mainly due to a large variety of routing
policies that are applied within and between Autonomous
Systems (ASes) [4], [5].

Examples of services that typically use anycast are the
DNS (e.g. the Root DNS and many ccTLD operators), DDoS
mitigation providers (e.g. Akamai, Cloudflare) and CDNs.

In Fig. 1 we show a simple routing graph containing a client
connecting to an IP in the prefix 1.1.1.0/24. In this case, AS1
has two possible routes towards this destination prefix, one
leading to a location in Amsterdam, and the other leading to
a location in Paris. BGP Route selection determines which
route will be selected as the best and, barring local preference
settings, will pick Amsterdam as the closest, due to it having a
shorter AS Path (AS2, AS5 (length 2), versus AS3, AS4, AS5
(length 3)).

Operating an anycast network can be challenging due to
the diverse and unpredictable nature of Internet routes. This is
exacerbated because of limited visibility into the policies and
algorithms that underlie the decisions that are made in routers
There are some projects, such as RIPE RIS and RouteViews,
which attempt to collect routing tables from routers around
the world, however, the scope of these is small (for example,

LHR

LAX

Internet

Clients

ICMP Echo Request ICMP Echo Response

Fig. 2: Schematic overview of Verfploeter methodology

RouteViews peers with 239 ASes1, less than 0.5% of the
total number of ASes2). Additionally, these routing tables only
contain active routes, and not those routes that were not selected
according to the BGP metrics.

B. Verfploeter

In previous work we developed a novel anycast measurement
methodology named Verfploeter [3]. It uses pings, or ICMP
Echo Requests, to map anycast catchments by sending requests
from the anycast service to ping-responsive hosts on the Internet.
The resulting responses, or ICMP Echo Replies, are then
collected across the anycast service, see Fig. 2. This establishes
the mapping between the source of the response, and the anycast
site at which the response was received.

This method differs from more traditional methods to
establish catchments. The most common method of assessing
anycast is to use public or private measurement platforms,
such as RIPE Atlas or PlanetLab. Such platforms offer Vantage
Points (VPs) across the world that can be used to perform
various measurements [6]. The downside is that the number
of VPs is inherently limited, and difficult to increase. This
inevitably leads to a bias in results because, e.g., RIPE Atlas
probes are much more densely distributed in some regions
(Europe) than others (Asia, South America).

In contrast, there are many ways to select viable ping-
responsive hosts, with the operator deciding which to use
depending on the use case. We describe three of them: First,
selecting the full IPv4 address space is, considering the
limited size, viable, the advantage is that the coverage of the
measurement is maximized, at the cost of duration, network
load, as well as storage. This method is also strictly nonviable
for IPv6. Secondly, a selection of hosts can be made from
previously collected traffic logs, this has the added benefit of
automatically including the bias that the service’s client base
has in the measurement. Lastly, a tailored hitlist can be used,
in particular, hitlists exist that attempt to select hosts that are
most likely to respond to ICMP Echo Requests, such as those
introduced in [7]. This particular IPv4 hitlist contains a single
IP-address per /24 prefix, which is historically deemed most
likely to respond. It is this last method that we use in this paper.
The development of similar hitlists for IPv6 is an ongoing field
of study [8]–[10].

1http://www.routeviews.org/peers/peering-status.html
2https://www.cidr-report.org/as2.0/

http://www.routeviews.org/peers/peering-status.html
https://www.cidr-report.org/as2.0/

In
te

rn
et

Operator

VP Edge

VP Edge

VP Edge

VP Edge

VP Edge

PoP 1

PoP 2

Router

Router

Lo
ad

 B
al

an
ce

r

Clickhouse

VP Core

VP Core

VP Core

Cloudflare Edge Cloudflare Core

Fig. 3: Setup for Verfploeter at Cloudflare

III. OPERATIONAL IMPLEMENTATION

In previous work, in which we introduced Verfploeter [3],
we discussed how to deploy Verfploeter on a limited scale
(an anycast testbed and DNS B Root, which currently has
three locations). In this paper our focus shifts to how we can
deploy Verfploeter on a massive scale, on Cloudflare’s anycast
network. As of writing, Cloudflare has 192 Points-of-Presence
worldwide, with over 30 Tbps of aggregate capacity [11]. It is
used to deliver many services which includes Public DNS and
Authoritative DNS, as well as a CDN and to provide DDoS
mitigation. They announce more than 700 prefixes, covering
roughly 1.5M IPv4 addresses [12].

In this section we discuss the challenges this creates and
how we tackle them. In particular we discuss (a) the goal and
requirements of the system, (b) the design choices we made
when implementing, with regard to the requirements and goal
and (c) the final architecture as it is currently in use.

Goal and requirements: Our goal for this implementation
is to set up a measurement infrastructure that can take snapshots
of the anycast catchment of a given prefix, on-demand as well
as scheduled, for the entirety of the global deployment. The
system should deliver the results in an accessible manner such
that the results can be manually or automatically analyzed. To
reach this goal, we defined the following requirements:
R1 Service wide measurements should be trivial to start:

to maximize the utility of this system, it should be trivial
for operators to start a measurement, without having to
consider the large scale and distributed nature of the
underlying service.

R2 Incoming packets that are part of the measurement
should be authenticated: to prevent third parties from
injecting results into the system without authorization,
incoming packets should be authenticated.

R3 Authenticated results should be inserted into a data
store for analysis: to allow both manual as well as
automated analysis, data should be stored in a suitable
data store.

R4 Communication between system components should
be reliable and secure: given that the system will be
running spread over many PoPs across the Internet,
communication should be secure, and as reliable as
possible to increase the accuracy of the results.

Design choices: Considering the goal and requirements we
now discuss the major design choices we made:

Centralized control: in order to meet R1, it is impractical to
have to contact each of the over 190 sites to start a measurement.
We therefore chose a design where there is a central component
(called VP-core) that manages the measurements, which the
systems in the anycast sites connect to, to poll for jobs (this
component is called VP-edge). Alternatively, the connection
could be setup the other way around, but that would require
the centralized component to have full knowledge over what
systems are active on the edge sites, while that knowledge
exists, it increases the complexity considerably.

Authentication: to prevent spoofed packets, and meet R2,
we add a hash-based message authentication code (HMAC)
in the ping payload. This ensures that received packets are
in response to packets that were sent by the system, and
not randomly generated by a third-party. Additionally, the
payload contains the original target IP address, as well as the
transmission timestamp. This information can then be used to
filter out invalid responses, e.g. those that are late, duplicated
or otherwise not authentic.

Robustness: To meet R3, each component buffers data such
that connection or transmission failures do not result in loss
of data. The core component is suitable to run in Kubernetes
(K8s) [13], which automatically restarts processes upon failure,
possibly on a different node of the K8s cluster, as well as
facilitating horizontal scaling. In addition, data is buffered
between the database and the core component by using a
robust message bus, Apache Kafka [14].

Secure communication: Transport Layer Security (TLS) is
used throughout the system for communication, to meet R4, in
combination with gRPC [15]. Edge components are persistently
connected to the core components.

Architecture: Verfploeter is a distributed system, written
in Go, which is schematically depicted in Fig. 3. It consists
of several components, the most important two of which are
shown. The system must have, due to the nature of anycast, a
component that runs on all nodes within the anycast service that
potentially receive traffic on an anycast prefix. This component
is referred to as VP-edge. The VP-core component on the
other hand runs centralized, but is replicated horizontally for
performance reasons.

TABLE I: Measurements with zero or more PoPs taken offline.
PoPs are labeled with IATA airport codes: AMS = Amsterdam
NL, LHR = London UK, CDG = Paris FR.

PoP(s) offline Count Response fraction

P0 None 3.49M 0.57
P1 AMS 3.44M 0.56
P2 LHR 3.30M 0.54
P3 CDG 3.42M 0.56
P4 AMS, LHR 3.45M 0.56
P5 AMS, CDG 3.50M 0.57

P6 one per measurement ≈3.5M ≈0.55
182 measurements
different PoP each measurement

The VP-edge component is responsible for sending and/or
receiving the ICMP Echo Requests and Replies. In any given
Point-of-Presence (PoP) there can be thousands of instances
of this component. Control of it is exercised via the central
VP-cores. Received responses are collected and transmitted,
batch-wise, to the VP-cores. Authentication and validation of
the incoming data occurs at the edge, such that only valid data
is collected at the VP-core.

The VP-core component has four functions:
• Controlling the VP-edge outbound functionality.
• Collecting the results from the VP-edges and inserting

them into an Apache Kafka messagebus, for later insertion
into the central data warehouse application (Clickhouse).

• Providing an API for external users.
The VP-cli component (not shown) is used to initiate a

measurement. It allows various command line options, e.g. to
indicate the source address to use (e.g. the anycast prefix),
which target addresses to use and which systems to initiate the
measurement from. Results become available in the central data
warehouse (based on Clickhouse [16]) when the measurement
completes, or are forwarded to the command line client directly.

IV. USE CASES

The system we discussed in Section III was implemented
as a production service in Cloudflare’s anycast network. To
show how Verfploeter supports better management of anycast
services, we now present three real-world use cases of how
Verfploeter can be used, and demonstrate them on Cloudflare’s
network. These range from planning, to troubleshooting, as
well as securing networks.

A. Planning

The primary reason to implement and use Verfploeter is for
planning purposes. Particularly, what consequences, in terms of
anycast catchments, does taking a particular PoP offline have.
There are several reasons why a PoP might be taken offline,
for example: for scheduled or unscheduled maintenance, or
the PoP is overloaded and some traffic needs to be shifted to
different PoPs.

Due to the nature of anycast and the opaqueness of the
Internet it is hard to predict where traffic will be rerouted in
case a prefix is withdrawn. This might cause difficulties, for

AMS: 0.999

LHR: 0.355

FRA: 0.320

BRU: 0.120

DUS: 0.071

GOT: 0.036
TXL: 0.030

CDG: 0.021
HAM: 0.012
DME: 0.012
ATH: 0.010

OTHER: 0.012

(a) AMS. Datasets: P0, P1.

LHR: 1.001

AMS: 0.464

MAN: 0.321

CDG: 0.081

FRA: 0.055

DUB: 0.044
LOS: 0.016
BRU: 0.009

OTHER: 0.011

(b) LHR. Datasets: P0, P2.

Fig. 4: Rerouting when a single PoP goes down.

example in case the traffic will be rerouted to a different PoP
that might not be able to handle the added load.

For this section we have performed 188 measurements (for
operational reasons not all PoPs were included), which we
show in Table I. In each of these measurements a different
PoP (and in two cases two PoPs) is taken offline. The number
of responses varies between measurements, but typically lies
around 3.5M, or 55% of the number of requests (≈6M), as
shown in the Count and Response fraction columns. We use
P0 as a baseline measurement to determine which IPs are
associated with each of the PoPs, and use that to track where
these IPs move to in the subsequent measurements. Note that
by taken offline we refer to withdrawing the announcement
of a test prefix, production traffic to the anycast network is
unaffected by these measurements.

Consider the case where a single PoP is taken offline. By
using two measurements, one in the normal state, and one in
a state where that PoP is down, using a test prefix, we can
show how prefixes will be rerouted. In Fig. 4a we show what
happens if the PoP in Amsterdam (AMS) is taken down. We
show what fraction of traffic is redistributed to which other PoP,
note that on the left side the fractions do not always add up to
precisely 1 due to rounding. Interestingly, the OTHER category
includes 20 additional PoPs, each receiving a small number of
rerouted prefixes. In the case of AMS the majority of traffic is
redirected to LHR and FRA, which is expected. However, we
would also expect CDG, another large PoP relatively close to
AMS and LHR, to rank high, but the measurements show that
this is not the case.

Complexity increases when taking multiple PoPs offline.
For example, consider Fig. 4b, here, instead of AMS, London
(LHR) is taken offline. We can see that in that case the majority
of prefixes would reroute to AMS. However, what happens if
AMS and LHR are taken offline. We show a measurement of
this scenario in Fig. 5b. We point out that there is a strong
dependency between LHR and AMS. The consequence of that
is that determining what happens when both are taken offline
based on the individual measurements we performed in Figs. 4a
and 4b leads to a high degree of uncertainty of 42%, see X in
Fig. 5a. X is the fraction of traffic that moves to AMS when
LHR is taken offline, and vice versa.

LHR: 0.559

X: 0.418

MAN: 0.180

AMS: 0.442

FRA: 0.171

BRU: 0.052

CDG: 0.054

DUS: 0.031

DUB: 0.024

GOT: 0.016
TXL: 0.014

LOS: 0.009

HAM: 0.006
DME: 0.006

OTHER: 0.020

(a) Calculated.
Datasets: P0, P1, P2.

LHR: 0.566

CDG: 0.253

AMS: 0.434

FRA: 0.362

MAN: 0.180

BRU: 0.053
LOS: 0.046
DUS: 0.031

DUB: 0.025

GOT: 0.016
HAM: 0.006
TXL: 0.006

DME: 0.005

OTHER: 0.017

(b) Measured.
Dataset: P0, P4.

Fig. 5: Rerouting with two PoPs down: AMS & LHR.

CDG: 0.544

LHR: 0.529

AMS: 0.457
FRA: 0.186

BRU: 0.091

X: 0.051

MRS: 0.038

DUS: 0.032

LUX: 0.017

GOT: 0.017
TXL: 0.014

HAM: 0.006
DME: 0.006

OTHER: 0.014

(a) Calculated.
Datasets: P0, P1, P3.

CDG: 0.544
LHR: 0.563

AMS: 0.454 FRA: 0.193

BRU: 0.092

MRS: 0.040

DUS: 0.038
GOT: 0.016

LUX: 0.016

MAD: 0.006
TXL: 0.006

HAM: 0.006
DME: 0.005

OTHER: 0.017

(b) Measured.
Datasets: P0, P5.

Fig. 6: Rerouting with two PoPs down: AMS & CDG.

In contrast, AMS and CDG (Paris) have a much lower
dependency on each other. In Fig. 6 we show that the calculated
(Fig. 6a) and the measured (Fig. 6b) route changes are very
similar. In practice, this means that PoPs with a low inter-
dependency do not require additional measurements to predict
where traffic shifts if they are taken offline together, as this
can be calculated from the individual measurements.

In Fig. 7 we show to how many other PoPs prefixes get
redistributed in the case the PoP that they were associated
to gets taken offline. Overall, most prefixes (>95%) that
are associated with one PoP get redistributed to a relatively
small number, 3 or fewer, other PoPs. This means that most
combinations of PoPs that are taken offline can be calculated
from Single PoP offline measurements. We do point out that
there is a long tail, where for some PoPs the last 5% of prefixes
get redistributed to 17 PoPs or more.

We emphasize two key takeaways from this: a) taking a PoP
down causes prefixes to be redistributed across a limited number
of PoPs, albeit with a long tail of small PoPs that take a small
amount of prefixes. b) depending on the collection of PoPs,
the redistribution can be calculated based on measurements
where only a single PoP is taken down, with a known degree
of certainty.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Number of PoPs

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

0 82 39 21 17 12 7 4 2 0 0 0 1 0 0 0 0 0

Number of PoPs where 95% of prefixes redistributes
to the number of PoPs on the lower X-axis

Fig. 7: ECDF for each measurement, showing to how many
PoPs the measured prefixes are redistributed. Datasets: P0, P1,
P2, P3, P6.

B. Identifying connectivity issues

One of the problems that arise when deploying an anycast
service is that it is typically not possible to use industry
standard tools such as ping and traceroute. The reason
for this is that the response will often, depending on the size
of the anycast network, be routed to a different system in a
different physical location. This makes it hard to troubleshoot
connectivity issues. In this section, we show how Verfploeter
can be used to troubleshoot networks similarly to how a ping
is normally used.

On the 1st of April 2018 Cloudflare launched its public
DNS service. An interesting aspect of this launch was that
it was launched on the novelty IP-ranges 1.1.1.0/24
and 1.0.0.0/24. Obviously, this range has an interesting
property in that it is particularly trivial to remember. However,
this address range had not before been used for any production
service, in fact, several manufacturers and ISPs appear to have
assumed that the range is suitable for internal use. Contexts in
which the range was used include captive portals and routers.
Note that IANA has not designated the range 1.0.0.0/8
or any part thereof as reserved [17]. The range is therefore,
according to the relevant authorities, suitable for public use. The
range was obtained via a research agreement with APNIC [18].

The effect of the use of addresses in 1.0.0.0/8 in
examples, captive portals, etc., is that especially the 1.1.1.1
address is not always reachable from edge networks. Typically,
a network operator would use pings to test connectivity, which,
as mentioned, will not trivially work on an anycast network.
However, with Verfploeter we are again able to use ICMP to
find connectivity problems. Specifically we used it to find issues
with connectivity to 1.1.1.1, compared with 1.0.0.1 and
a third, unrelated IP address, 104.23.98.190 which has no
known issues.

We perform measurements from each of the three source
addresses, towards approximately 6 million target addresses.
To increase the number of results we repeat the measurement
once, and combine the results. In Table II we show the number
of responses, as well as the response fraction, for each of the
measurements.

Fig. 8: Hilbert curve presenting connectivity issues, highlighting places where 1.0.0.1 has no issues, but 1.1.1.1 does in blue,
vice versa in red, and where both have no issues in green.)

TABLE II: Measurements from three different source addresses,
and combined totals.

Source Count Response fraction

1.0.0.1 3.47M 0.56
1.0.0.1 3.49M 0.57
1.1.1.1 3.28M 0.53
1.1.1.1 3.28M 0.53
104.23.98.190 3.48M 0.57
104.23.98.190 3.5M 0.57

Combined
1.0.0.1 3.58M 0.58
1.1.1.1 3.36M 0.55
104.23.98.190 3.59M 0.58

TABLE III: The different combinations of reachability and
counts for each

IPs Count Fraction

1.0.0.1, 1.1.1.1, 104.23.98.190 3,324,062 0.917
1.0.0.1, 104.23.98.190 232,160 0.064
104.23.98.190 18,526 0.005
1.1.1.1, 104.23.98.190 17,508 0.005
1.0.0.1, 1.1.1.1 16,473 0.005
1.0.0.1 8,125 0.002
1.1.1.1 6,707 0.002

In Table III we show the different combinations of reacha-
bility that we encounter. By far the largest group of responders
(almost 92%) do so to each of the three source IP addresses.
These responders have no issues reaching 1.1.1.1. The
second category consists of responders that only respond for
two out of three addresses, where the missing address is
1.1.1.1. This category, while smaller than the first category
is still quite substantial with approximately 6% of the addresses
falling in this category. The remaining categories are much
smaller, and we attribute them to random noise, e.g. hosts
intermittently not responding or packet loss.

Zooming in on the second category, we investigate which
Autonomous Systems (ASes) are involved in the unreachability
of 1.1.1.1. Table IV shows the top 5 ASes involved in
ping failures. Interestingly China stands out with originating
a large part of the failures.

TABLE IV: Top 5 ASNs showing prefixes unable to reach
1.1.1.1, but are able to reach 1.0.0.1 and 104.23.98.190

ASN AS Name Count

4837 China Unicom Backbone 70,649
4134 China Telecom Backbone 25,447
3352 Telefónica de España 11,049
7018 AT&T Services, Inc. 9,318
26615 TIM Celular S.A. 8,394

In Fig. 8 we show a Hilbert curve [19], a way of representing
1-dimensional information in a 2-dimensional image, while
maintaining proximity. This curve shows where on the Internet,
in terms of IP-space, connectivity issues to 1.1.1.1 and
1.0.0.1 occur. It appears that IP-space managed by APNIC,
the Asia-Pacific Regional Internet Registry (RIR), has the
highest number of issues, while space managed by RIPE and
ARIN is far less problematic.

These results show, how, when operating an anycast network,
our methodology can be applied to regain the functionality of
a simple ping to troubleshoot a network. As a by-effect, we
also show where on the Internet a major public DNS resolver,
1.1.1.1, might still be inaccessible due to companies or
organizations using ranges for purposes outside of what they
were assigned.

C. Securing against spoofed traffic

Spoofed traffic, in which malicious actors falsify source IP
addresses in packets, is an ongoing issue for operators. There
are initiatives to counter IP spoofing, such as BCP38, which
specifies that network operators should perform ingress filtering
to block spoofed traffic. While anti-spoofing techniques are
becoming more widespread, there is still a significant amount
of spoofed traffic on the Internet [20], [21].

Three important reasons for bad actors to perform IP spoofing
when attacking are: a) it is inherent to DDoS amplification
attacks, where the IP is spoofed to match that of the target of
the attack. b) to prevent identification of sources of traffic. c)
to make it harder to filter out traffic.

In this section, we investigate the possibility to detect spoofed
traffic by using comprehensive anycast mappings. The principle

AMS

CDG

FRAInternet
2.2.2.2

2.2.2.2
(spoofed)

observed source IP
2.2.2.2

observed source IP
2.2.2.2

Fig. 9: Two traffic sources, using the same source IP, one
spoofed and one legitimate. The observed IP at the server side
is the same, the only difference is the location.

0 25 50 75 100 125 150 175 200
times an IP was seen responding

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

median 179

of runs
(191)

Fig. 10: Responses per IP

behind it is that because Internet routes are mostly stable, and
traffic from most IP-ranges is routed to the same PoP every
time, any traffic from those IP-ranges reaching a different PoP
should be considered as likely spoofed, as depicted in Fig. 9.

We investigate two assumptions, namely that specific /24
IP-ranges are consistently routed to the same PoP, as well as
that most /24 prefixes will route to the same PoP, regardless
of the origin of the Verfploeter measurement. We suspect that
the origin of the measurement can have an impact in the case
that the target of the ICMP Echo Request, as part of the
measurement, is itself an anycast service. We also speculate
that there are reasons, such as the ingress point of traffic having
some effect on the egress point for some particular networks.

We perform 191 Verfploeter measurements, towards the
IPv4 hitlist as described in Section II, one for each active
PoP, in the Cloudflare CDN. Due to the unreliable nature of
ICMP, combined with the fact that the hosts in the IPv4 hitlist
may or may not respond, we expect that we will not gather
191 responses for each IP in the hitlist. We show how many
responses we gathered, per IP, in Fig. 10. We observe a median
for the number of times an IP was seen of 179.

One of our primary interests is whether the IPs that we
measure are associated with just a single PoP. Our assumption
is that they are, and in Fig. 11 we can see that 95.3% of the IPs
are in fact seen at only a single PoP. Interestingly this figure
shows that there is a significant tail with some IPs appearing
at as many as 61 PoPs. As we have said before, we assume
that a likely reason for this is that those IPs are actually in an
anycasted prefix themselves. To confirm this, we take a look
at those IPs that show up in the most PoPs and show their
corresponding AS, and their reverse hostname in Table V.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61
Number of PoPs

100

101

102

103

104

105

106

N
u
m

b
e
r

o
f

IP
s

95.3% of all IPs

Table V

Fig. 11: Number of Points-of-Presence seen for a single IP-
prefix.

TABLE V: IP-prefixes hitting the highest number of PoPs.
AS8068 = Microsoft, AS26415 = ICANN, AS42 = PCH

Prefix PoPs ASN Rev. Hostname

192.58.128.0/24 61 26415 j.root-servers.net
204.61.216.0/23 60 42 ns.anycast.woodynet.net
192.33.14.0/24 59 26415 b.gtld-servers.net
189.201.244.0/23 58 42 e.mx-ns.mx
204.19.119.0/24 58 42 c.ns.apple.com
200.108.148.0/24 58 42 c.dns.ar
206.51.254.0/24 58 42 lns61.nic.tr
13.107.4.0/24 58 8068 ns1.c-msedge.net
194.0.17.0/24 58 42 e.nic.ch

Interestingly, the top 9 IPs that hit the highest number of PoPs
all belong to one of three organizations, all of which are known
to manage large anycast networks, namely Microsoft, Verisign
and Packet Clearing House (PCH). Two interesting examples
are the J DNS root server (reverse hostname j.root-servers.net),
which is hosted by Verisign, which is seen at 61 different PoPs,
as well as one of the gTLD authoritative nameservers (reverse
hostname b.gtld-servers.net), which is also hosted by Verisign.
We interpret this as confirmation that anycasted services can
indeed be revealed using this methodology.

Given that 95% of the IP addresses are only seen at a single
PoP, it seems likely that also many Autonomous Systems, and
all their addresses, are only seen at a single PoP. We investigate
this by looking up the ASNs of each of the addresses, and
confirm that out of a total of 60,295 ASNs that we see, from
52,533 ASNs all IPs are seen at a single PoP, but not necessarily
the same one for each IP. 52,533 ASNs have IPs that are also
only seen at a single PoP, and that PoP is also the same for
all of the addresses. 2,541 only have addresses that are seen
at multiple PoPs, while 3,069 contain addresses that are seen
at both single as well as multiple PoPs.

These results show that most IP addresses that are seen on the
Internet, and in fact most of the ASes, are only expected to show
up at a single Point-of-Presence. Theoretically this should mean
that any traffic that arrives at a PoP that it is is not supposed
to, according to this mapping, can be considered as likely to
be spoofed. This technique relies on a mismatch between the
spoofed IP and the receiving PoP, if such a mismatch does not
exist then the spoofing attempt will not be detected, intuitively,
the probability of this happening decreases as the number of
PoPs in the anycast network rises.

0 1 2 3 4 5 6 7 8 9 10 11
Minutes since start of measurement

0M

10M

20M

30M

40M

50M
Pa

ck
et

s p
er

 se
co

nd Unexpected
Unknown
Expected

Fig. 12: Detecting spoofed traffic during a SYN-flood attack,
according to the previously established client to PoP mapping

To demonstrate this technique in practice we recorded flow
measurements during a known SYN-flood attack, on the same
day the measurements for the client to PoP mapping were run.
For each flow we checked if the source IP was supposed to
arrive at the PoP it did, according to the mapping. The results
of this are shown in Fig. 12. We can see that the expected
traffic is constant over the duration (11 minutes). We see a
steep increase in unexpected source addresses during the attack
itself, indicating that the mapping provides a strong signal
for detecting spoofed traffic. The unknown category indicates
that even though our measurements cover many prefixes, there
are still those for which we have no mapping. Compared to
the traditional method of looking at TTLs to identify spoofed
traffic [22], our method promises to provide a stronger signal,
which we intend to further investigate in the future. Compared
to more recent work [23], based on machine learning, this
approach does not depend on up to date learning models to
remain accurate. As future work we aim to further investigate
the distribution of IPs contained in the unexpected and unknown
categories, particularly outside the attack window.

The key takeaway from this section is that we have shown
that Verfploeter can be applied to help operators defend against
DDoS attacks that consist of spoofed traffic. Once identified
this traffic can then be filtered or rate-limited.

V. RELATED WORK

There is a large body of past work that used public mea-
surement platforms, such as RIPE Atlas [24], PlanetLab [25],
and the NLNOG RING [26], to study the operation of anycast
services [2], [27]–[33]. Using public measurement platforms is
a flexible way to study anycast services. A key characteristic
of these platforms is that they provide some form of access,
e.g. via SSH, an API, or a Web UI, to physical or virtual
probes. Typically they allow a wide array of measurements to
be performed. Compared to the Verfploeter method used in
this paper, however, the use of public measurement platforms
has two limitations. First, the number of vantage points from
which measurements can be conducted is limited, and often
many orders of magnitude less than what Verfploeter can
achieve. Second, these measurements suffer from an inherent
bias because of the placement of vantage points. This means
they will always provide an incomplete view of actual anycast
catchments.

Li et al [34] look at one of the root DNS servers for over
a year, and find that site loads are often unbalanced, and that
many clients are routed to a PoP that is suboptimal in terms
of great-circle distance by several thousands of kilometers.
They attribute this problem to inter-domain routing topology
and policies, as well as poor route selection in the case that
routes to multiple sites are available. These finds strengthen
the case for a system that is able to perform fast and precise
measurements of anycast catchments.

Past work has also focused specifically on anycast perfor-
mance in CDNs. Calder et al. [2] study the anycast network for
Microsoft’s Bing search engine and show that while anycast
generally performs well, up to 20% of clients get redirected to
sub-optimal PoPs. They introduce a simple scheme to improve
PoP assignment using other means than anycast (specifically
DNS-based methods). Flavel et al. [1] introduce FastRoute, a
hybrid approach that combines anycast and DNS-based load
balancing to route clients to optimal PoPs. Where these past
studies focused on anycast as just one means of distributing
traffic, and augment this with other load balancing approaches,
in this paper, we focus on a network that is managed purely
as an anycast service, and show how Verfploeter can play a
vital role in understanding and managing this network.

Finally, very recent work by McQuistin et al. [35] shows that
anycast services that make use of multiple network operators
can benefit from tailoring their BGP announcements to optimise
end-user performance.

VI. CONCLUSIONS

In this paper we show how a global scale anycast network
can be managed, using a methodology that we previously
proposed in [3]. Compared to our previous work, we have
validated our methodology on a much larger scale, on one of
the world’s largest anycast CDNs. We have also shown three
use cases, that exemplify how this methodology can be applied.

We have described what the goals were for the implemen-
tation, how we chose to meet those goals and what the final
operational implementation looks like. This implementation
validates that Verfploeter can be deployed on any scale, from
small dual node anycast services, such as shown in our initial
work, up to the largest scale networks on the Internet.

Our three use cases show: Firstly, how this methodology can
be applied by operators for planning purposes, and have shown
that, depending on the case, the outcome of taking offline
different combinations of anycast PoPs can be determined
based on measurements in which only a single PoP was taken
offline. Secondly, how it brings a traditional troubleshooting
tool ping, in to the realm of anycast, and demonstrate how it
was used to assess the reachability of a particularly interesting
IP address. Lastly, we show how the methodology can be used
to assist in the mitigation of DDoS attacks by providing a
way to identify spoofed traffic based on known client to IP
mappings.

Acknowledgments: This work was (partially) funded by
Cloudflare, NWO grant #628.001.029, SURFnet Research on
Networks and EU H2020 CONCORDIA (#830927).

REFERENCES

[1] A. Flavel, P. Mani, D. A. Maltz, N. Holt, J. Liu, Y. Chen, and
O. Surmachev, “FastRoute: A scalable load-aware anycast routing
architecture for modern CDNs,” in Proceedings of the 12th USENIX
Symposium on Networked Systems Design and Implementation, NSDI
2015. Oakland, CA, USA: USENIX Association, 2015, pp. 381–394.

[2] M. Calder, A. Flavel, E. Katz-Bassett, R. Mahajan, and J. Padhye,
“Analyzing the Performance of an Anycast CDN,” in Proceedings of
the ACM Internet Measurement Conference. Tokyo, Japan: ACM, Oct.
2015, pp. 531–537. [Online]. Available: http://conferences2.sigcomm.
org/imc/2015/papers/p531.pdf

[3] W. B. de Vries, R. de O. Schmidt, W. Hardaker, J. Heidemann, P.-T.
de Boer, and A. Pras, “Broad and Load-aware Anycast Mapping
with Verfploeter,” in Proceedings of the 2017 Internet Measurement
Conference, ser. IMC ’17. New York, NY, USA: ACM, 2017, pp. 477–
488. [Online]. Available: http://doi.acm.org/10.1145/3131365.3131371

[4] R. Anwar, H. Niaz, D. Choffnes, I. Cunha, P. Gill, and E. Katz-Bassett,
“Investigating interdomain routing policies in the wild,” in Proceedings
of the 2015 ACM Conference on Internet Measurement Conference, ser.
IMC ’15. New York, NY, USA: ACM, 2015, pp. 71–77. [Online].
Available: http://doi.acm.org/10.1145/2815675.2815712

[5] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford, “Dynamics of
hot-potato routing in ip networks,” SIGMETRICS Perform. Eval.
Rev., vol. 32, no. 1, pp. 307–319, Jun. 2004. [Online]. Available:
http://doi.acm.org/10.1145/1012888.1005723

[6] RIPE NCC Staff, “RIPE Atlas: A Global Internet Measurement Network,”
The Internet Protocol Journal, vol. 18, no. 3, pp. 2–26, Sep. 2015.

[7] X. Fan and J. Heidemann, “Selecting representative IP addresses
for Internet topology studies,” in Proceedings of the ACM Internet
Measurement Conference. Melbourne, Australia: ACM, Nov. 2010,
pp. 411–423. [Online]. Available: http://www.isi.edu/∼johnh/PAPERS/
Fan10a.html

[8] O. Gasser, Q. Scheitle, S. Gebhard, and G. Carle, “Scanning the IPv6
Internet: Towards a Comprehensive Hitlist,” in Proc. 8th Int. Workshop
on Traffic Monitoring and Analysis, 2016.

[9] A. Murdock, F. Li, P. Bramsen, Z. Durumeric, and V. Paxson,
“Target Generation for Internet-wide IPv6 Scanning,” in Proceedings
of the 2017 Internet Measurement Conference, ser. IMC ’17. New
York, NY, USA: ACM, 2017, pp. 242–253. [Online]. Available:
http://doi.acm.org/10.1145/3131365.3131405

[10] O. Gasser, Q. Scheitle, P. Foremski, Q. Lone, M. Korczyński, S. D.
Strowes, L. Hendriks, and G. Carle, “Clusters in the Expanse:
Understanding and Unbiasing IPv6 Hitlists,” in Proceedings of
the Internet Measurement Conference 2018, ser. IMC ’18. New
York, NY, USA: ACM, 2018, pp. 364–378. [Online]. Available:
http://doi.acm.org/10.1145/3278532.3278564

[11] Cloudflare, https://www.cloudflare.com, accessed: 2019-11-22.
[12] Hurricane Electric, “AS13335,” https://bgp.he.net/AS13335, accessed:

2019-11-22.
[13] K. Hightower, B. Burns, and J. Beda, Kubernetes: Up and Running Dive

into the Future of Infrastructure, 1st ed. O’Reilly Media, Inc., 2017.
[14] Apache, “Kafka,” https://kafka.apache.org/, accessed: 2019-11-22.
[15] gRPC, https://grpc.io, accessed: 2019-11-22.
[16] Yandex, “Clickhosue,” https://clickhouse.yandex, accessed: 2020-01-13.
[17] IANA, “IANA IPv4 Special-Purpose Address Registry,”

https://www.iana.org/assignments/iana-ipv4-special-registry/
iana-ipv4-special-registry.xhtml, accessed: 2020-01-13.

[18] Geoff Houston, “APNIC Labs enters into a Research Agreement with
Cloudflare,” https://labs.apnic.net/?p=1127, accessed: 2020-01-13.

[19] H. V. Jagadish, “Analysis of the hilbert curve for representing two-
dimensional space,” Information Processing Letters, vol. 62, no. 1, pp.
17–22, 1997.

[20] R. Beverly and S. Bauer, “The Spoofer project: Inferring the extent of
source address filtering on the Internet,” in Usenix Sruti, vol. 5, 2005,
pp. 53–59.

[21] R. Beverly, R. Koga, and K. Claffy, “Initial longitudinal analysis of
IP source spoofing capability on the Internet,” Internet Society, p. 313,
2013.

[22] Q. Scheitle, O. Gasser, P. Emmerich, and G. Carle, “Carrier-Grade
Anomaly Detection Using Time-to-Live Header Information,” CoRR,
vol. abs/1606.07613, 2016. [Online]. Available: http://arxiv.org/abs/1606.
07613

[23] A. Degirmencioglu, H. T. Erdogan, M. A. Mizani, and O. Yılmaz,
“A classification approach for adaptive mitigation of syn flood attacks:
Preventing performance loss due to syn flood attacks,” in NOMS 2016-
2016 IEEE/IFIP Network Operations and Management Symposium.
IEEE, 2016, pp. 1109–1112.

[24] R. Staff, “Ripe atlas: A global internet measurement network,” Internet
Protocol Journal, vol. 18, no. 3, 2015.

[25] PlanetLab, https://www.planet-lab.org/.
[26] NLNOG Ring, http://ring.nlnog.net/.
[27] E. Aben, “DNS Root Server Transparency: K-Root, Anycast

and More,” Web, Jan. 2017, RIPE NCC. [Online]. Available:
https://labs.ripe.net/Members/emileaben/dns-root-server-transparency

[28] R. Bellis, “Researching F-root anycast placement us-
ing RIPE Atlas,” RIPE Labs: https://labs.ripe.net/Members/
ray bellis/researching-f-root-anycast-placement-using-ripe-atlas, Oct.
2015. [Online]. Available: https://labs.ripe.net/Members/ray bellis/
researching-f-root-anycast-placement-using-ripe-atlas

[29] D. Cicalese, J. Augé, D. Joumblatt, T. Friedman, and D. Rossi,
“Characterizing IPv4 Anycast Adoption and Deployment,” in Proceedings
of the 11th ACM Conference on Emerging Networking Experiments and
Technologies (CoNEXT), 2015, pp. 16:1–16:13.

[30] X. Fan, J. Heidemann, and R. Govindan, “Evaluating anycast
in the Domain Name System,” in Proceedings of the IEEE
Infocom. IEEE, Apr. 2013, pp. 1681–1689. [Online]. Available:
http://www.isi.edu/∼johnh/PAPERS/Fan13a.html

[31] D. Madory, A. Popescu, and E. Zmijewski, “Accidentally Importing
Censorship - The I-root instance in China,” Presentation, Jun. 2010, Re-
nesys Corporation. [Online]. Available: https://www.nanog.org/meetings/
nanog49/presentations/Tuesday/Madory-I-root-lightning-talk.pdf

[32] G. C. M. Moura, R. de O. Schmidt, J. Heidemann, W. B. de Vries,
M. Müller, L. Wei, and C. Hesselman, “Anycast vs. DDoS: Evaluating
the November 2015 Root DNS Event,” in Proceedings of the ACM
Internet Measurement Conference, Nov. 2016, pp. 255–270. [Online].
Available: http://www.isi.edu/%7ejohnh/PAPERS/Moura16b.html

[33] R. d. O. Schmidt, J. Heidemann, and J. H. Kuipers, “Anycast
latency: How many sites are enough?” in Proceedings of the
Passive and Active Measurement Workshop. Sydney, Australia:
Springer, Mar. 2017, pp. 188–200. [Online]. Available: http:
//www.isi.edu/%7ejohnh/PAPERS/Schmidt17a.html

[34] Z. Li, D. Levin, N. Spring, and B. Bhattacharjee, “Internet anycast:
performance, problems, & potential.” in SIGCOMM, 2018, pp. 59–73.

[35] S. McQuistin, S. Priyanka, and M. Flores, “Taming Anycast in a
Wild Internet,” in Proceedings of the 19th ACM SIGCOMM Internet
Measurement Conference (IMC 2019). ACM, 2019.

http://conferences2.sigcomm.org/imc/2015/papers/p531.pdf
http://conferences2.sigcomm.org/imc/2015/papers/p531.pdf
http://doi.acm.org/10.1145/3131365.3131371
http://doi.acm.org/10.1145/2815675.2815712
http://doi.acm.org/10.1145/1012888.1005723
http://www.isi.edu/~johnh/PAPERS/Fan10a.html
http://www.isi.edu/~johnh/PAPERS/Fan10a.html
http://doi.acm.org/10.1145/3131365.3131405
http://doi.acm.org/10.1145/3278532.3278564
https://www.cloudflare.com
https://bgp.he.net/AS13335
https://kafka.apache.org/
https://grpc.io
https://clickhouse.yandex
https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
https://labs.apnic.net/?p=1127
http://arxiv.org/abs/1606.07613
http://arxiv.org/abs/1606.07613
https://www.planet-lab.org/
http://ring.nlnog.net/
https://labs.ripe.net/Members/emileaben/dns-root-server-transparency
https://labs.ripe.net/Members/ray_bellis/researching-f-root-anycast-placement-using-ripe-atlas
https://labs.ripe.net/Members/ray_bellis/researching-f-root-anycast-placement-using-ripe-atlas
https://labs.ripe.net/Members/ray_bellis/researching-f-root-anycast-placement-using-ripe-atlas
https://labs.ripe.net/Members/ray_bellis/researching-f-root-anycast-placement-using-ripe-atlas
http://www.isi.edu/~johnh/PAPERS/Fan13a.html
https://www.nanog.org/meetings/nanog49/presentations/Tuesday/Madory-I-root-lightning-talk.pdf
https://www.nanog.org/meetings/nanog49/presentations/Tuesday/Madory-I-root-lightning-talk.pdf
http://www.isi.edu/%7ejohnh/PAPERS/Moura16b.html
http://www.isi.edu/%7ejohnh/PAPERS/Schmidt17a.html
http://www.isi.edu/%7ejohnh/PAPERS/Schmidt17a.html

